Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Di- μ-bromido-bis[benzyl(diethyl ether)magnesium]

Mark A. Nesbit, Danielle L. Gray and Gregory S. Girolami*

University of Illinois at Urbana-Champaign, School of Chemical Sciences, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
Correspondence e-mail: girolami@scs.illinois.edu

Received 1 June 2012; accepted 5 June 2012
Key indicators: single-crystal X-ray study; $T=193 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.031 ; w R$ factor $=0.073 ;$ data-to-parameter ratio $=18.6$.

The title benzyl Grignard reagent, $\left[\mathrm{Mg}_{2} \mathrm{Br}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2^{-}}\right.$ $\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right)_{2}$], was obtained by reaction of benzyl bromide with magnesium in diethyl ether, followed by crystallization from toluene. The asymmetric unit comprises one half-molecule, the structural dimeric unit being generated by inversion symmetry with an $\mathrm{Mg} \cdots \mathrm{Mg}$ distance of 3.469 (2) \AA. The $\mathrm{Mg}(\mathrm{II})$ atom exhibits a distorted tetrahedral coordination geometry. The crystal packing is defined by van der Waals interactions only.

Related literature

For the structures of some other diethyl ether adducts of Grignard reagents, see: Stucky \& Rundle (1964); Guggenberger \& Rundle (1968); Engelhardt et al. (1988); Antolini et al. (2003); Avent et al. (2004). For the structures of some tetrahydrofuran and diisopropyl ether adducts of Grignard reagents, see: Maurice (1969); Spek et al. (1974); Krieck et al. (2009).

Experimental

Crystal data
$\left[\mathrm{Mg}_{2} \mathrm{Br}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right)_{2}\right]$
$M_{r}=538.93$

$$
Z=2
$$

Monoclinic, $P 2_{b} / c$
$a=8.0657$ (4) А
$b=12.4288$ (6) \AA
$c=13.1840$ (6) \AA
$\beta=96.370(3)^{\circ}$

$$
V=1313.50(11) \AA^{3}
$$

Mo $K \alpha$ radiation
Mo $K \alpha$ radiation
$\mu=3.15 \mathrm{~mm}^{-1}$
$T=193 \mathrm{~K}$
$0.38 \times 0.27 \times 0.23 \mathrm{~mm}$

Data collection

Bruker Platform APEXII CCD diffractometer
Absorption correction: integration (SADABS; Bruker, 2007)
$T_{\text {min }}=0.440, T_{\text {max }}=0.635$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.073$
$S=1.04$
2396 reflections

> 129 parameters
> H -atom parameters not refined
> $\Delta \rho_{\max }=0.42 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.36 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Mg} 1-\mathrm{O} 1$	$2.0006(18)$	$\mathrm{Mg} 1-\mathrm{Br} 1^{\mathrm{i}}$	$2.5448(9)$
$\mathrm{Mg} 1-\mathrm{C} 7$	$2.115(3)$	$\mathrm{Mg} 1-\mathrm{Br} 1$	$2.5659(9)$

Symmetry code: (i) $-x+2,-y+1,-z$.
Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT and XPREP (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: $S H E L X T L$; molecular graphics: SHELXTL; software used to prepare material for publication: XCIF (Bruker, 2005).

This work was supported financially by the National Science Foundation (CHE-1112360). X-ray data were collected in the Materials Chemistry Laboratory at the University of Illinois (supported in part by grants NSF CHE 95-03145 and NSF CHE 03-43032 from the National Science Foundation).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2423).

References

Antolini, F., Hitchcock, P. B., Lappert, M. F. \& Wei, X.-H. (2003). Organometallics, 22, 2505-2516.
Avent, A. G., Caro, C. F., Hitchcock, P. B., Lappert, M. F., Li, Z. \& Wei, X.-H. (2004). Dalton Trans. pp. 1567-1577.

Bruker (2005). SAINT, XCIF and XPREP. Bruker AXS, Inc., Madison, Wisconsin, USA.
Bruker (2007). SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
Bruker (2010). APEX2. Bruker AXS, Inc., Madison, Wisconsin, USA.
Engelhardt, L. M., Harvey, S., Raston, C. L. \& White, A. H. (1988). J. Organomet. Chem. 341, 39-51.
Guggenberger, L. J. \& Rundle, R. E. (1968). J. Am. Chem. Soc. 90, 5375-5378.
Krieck, S., Görls, H., Yu, L., Reiher, M. \& Westerhausen, M. (2009). J. Am. Chem. Soc. 131, 2977-2985.
Maurice, V. J. (1969). J. Organomet. Chem. 20, 1-10.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L., Voorbergen, P., Schat, G., Blomberg, C. \& Bickelhaupt, F. J. (1974). J. Organomet. Chem. 77, 147-151.

Stucky, G. \& Rundle, R. E. (1964). J. Am. Chem. Soc. 86, 4825-4830.

supplementary materials

Acta Cryst. (2012). E68, m942 [doi:10.1107/S1600536812025445]

Di- μ-bromido-bis[benzyl(diethyl ether)magnesium]

Mark A. Nesbit, Danielle L. Gray and Gregory S. Girolami

Comment

Similar dimeric structures have been reported for the bromo Grignard reagents $\left[\mathrm{Mg}(\mu-\mathrm{Br})\left\{\mathrm{CH}\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)\left(\mathrm{SiMe}_{3}\right)\right\}\right.$ $\left.\left(\mathrm{OEt}_{2}\right)\right]_{2}$ (Antolini, et al., 2003), $\left[\mathrm{Mg}(\mu-\mathrm{Br})\left\{\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}\left(\mathrm{OEt}_{2}\right)\right]_{2}$ (Avent, et al., 2004), and $[\mathrm{Mg}(\mu-\mathrm{Br}) \mathrm{Et}(\mathrm{O}-i-\mathrm{Pr} 2)]_{2}$ (Spek, et al., 1974). In all three of these molecules, the magnesium centres each bear one ether ligand, and two $\mathrm{Mg}-\mathrm{Br}-\mathrm{Mg}$ bridges join the metal centres. Most bromo Grignard reagents with two ether molecule per Mg centre are monomeric; examples include $\mathrm{MgBrPh}\left(\mathrm{OEt}_{2}\right)_{2}$ (Stucky \& Rundle, 1964), $\mathrm{MgBrEt}\left(\mathrm{OEt}_{2}\right)_{2}$ (Guggen^{2} erger \& Rundle, 1968), $\operatorname{MgBr}\left(\mathrm{CPh}_{3}\right)\left(\mathrm{OEt}_{2}\right)_{2}$ (Engelhardt et al., 1988) and $\operatorname{MgBr}\left(2,4,6-\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Ph}_{3}\right)(\mathrm{thf})_{2}($ Krieck et al., 2009). Finally, there are some monomeric bromo Grignard reagents in which the magnesium centre bears three ether ligands and very small organic groups, such as in $\operatorname{MgBrMe}(\mathrm{thf})_{3}$ (Maurice, 1969).

Experimental

A 250 mL round bottom flask was charged with Mg turnings ($2.6 \mathrm{~g}, 107 \mathrm{mmol}$) and diethyl ether (90 mL). To the stirred suspension was added benzyl bromide ($10 \mathrm{~mL}, 84 \mathrm{mmol}$) dropwise by means of an addition funnel over 30 min . After the slight exotherm had subsided, the solution was brought to reflux for two h . The solution was filtered and the filtrate was stored at 253 K . Titration with 0.13 MHCl showed the solution to have a concentration of 0.93 M .

An aliquot of the benzyl magnesium bromide solution ($11.5 \mathrm{~mL}, 10.7 \mathrm{mmol}$) was taken to dryness under reduced pressure at 263 K and the residue was extracted with 1:1 benzene/toluene $(50 \mathrm{~mL})$. The clear yellow extract was concentrated to ca 20 mL and stored at 253 K overnight affording large colourless crystals.

Refinement

A structural dimeric model of (I) is $\left[\mathrm{Mg}(\mu-\mathrm{Br})\left(\mathrm{CH}_{2} \mathrm{Ph}\right)\left(\mathrm{OEt}_{2}\right)\right]_{2}$ whereas an asymmetric unit comprises a half of the molecule. All non-H atoms were located from the difference map and refined anisotropically. H atom treatment: methyl H atom positions, $\mathrm{R}-\mathrm{CH}_{3}$, were optimised by rotation about $\mathrm{R}-\mathrm{C}$ bonds with idealised $\mathrm{C}-\mathrm{H}, \mathrm{R}-\mathrm{H}$ and $\mathrm{H}-\mathrm{H}$ distances; the remaining H atoms were included as riding idealised contributors. Methyl H atom U 's were assigned as 1.5 times U_{eq} of the carrier atom; remaining H atom U 's were assigned as 1.2 times carrier $U_{\text {eq }}$.

Computing details

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT and XPREP (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XCIF (Bruker, 2005).

Figure 1

Structural unit of (I) with 50% probability displacement ellipsoids for non-H atoms. Arbitrary radii for H atoms are used. The unlabeled atoms are related by the symmetry operator $(-x+2,-y+1,-z)$.

Di- μ-bromido-bis[benzyl(diethyl ether)magnesium]

Crystal data

$\left[\mathrm{Mg}_{2} \mathrm{Br}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right)_{2}\right]$
$M_{r}=538.93$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=8.0657$ (4) Å
$b=12.4288$ (6) \AA
$c=13.1840(6) \AA$
$\beta=96.370(3)^{\circ}$
$V=1313.50(11) \AA^{3}$
$Z=2$

Data collection

Bruker Platform APEXII CCD
diffractometer
Radiation source: normal-focus sealed tube
Graphite monochromator
profile data from φ and ω scans
$F(000)=552$
$D_{\mathrm{x}}=1.363 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5006 reflections
$\theta=2.3-23.5^{\circ}$
$\mu=3.15 \mathrm{~mm}^{-1}$
$T=193 \mathrm{~K}$
Prism, colourless
$0.38 \times 0.27 \times 0.23 \mathrm{~mm}$

Absorption correction: integration
(SADABS; Bruker, 2007)
$T_{\text {min }}=0.440, T_{\text {max }}=0.635$
22801 measured reflections
2396 independent reflections

1808 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.078$
$\theta_{\text {max }}=25.3^{\circ}, \theta_{\text {min }}=2.3^{\circ}$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.073$
$S=1.04$
2396 reflections
129 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& h=-9 \rightarrow 9 \\
& k=-14 \rightarrow 14 \\
& l=-15 \rightarrow 15
\end{aligned}
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters not refined
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0305 P)^{2}+0.0177 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.42 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.36 \mathrm{e} \AA^{-3}$

Special details

Experimental. One distinct cell was identified using APEX2 (Bruker, 2010). Ten frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2005) then corrected for absorption by integration using SHELXTL/XPREP V2005/2 (Bruker, 2005) before using $S A D A B S$ (Bruker, 2005) to sort, merge, and scale the combined data. No decay correction was applied.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. The structure was phased by direct methods (Sheldrick, 2008). The systematic conditions suggested the unambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix leastsquares refinement on F^{2}. The highest peaks in the final difference Fourier map were in the vicinity of atom Br ; the final map had no other significant features. A final analysis of variance between observed and calculated structure factors showed little dependence on amplitude or resolution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
Mg1	$1.18152(11)$	$0.47556(7)$	$0.08013(7)$	$0.0396(2)$
Br 1	$0.89572(3)$	$0.55206(2)$	$0.11052(2)$	$0.05037(13)$
O1	$1.1776(2)$	$0.32859(13)$	$0.14171(14)$	$0.0459(5)$
C1	$1.3770(3)$	$0.6793(2)$	$0.0998(2)$	$0.0396(7)$
C2	$1.4242(4)$	$0.7119(2)$	$0.0058(2)$	$0.0521(8)$
H2	1.4702	0.6604	-0.0364	0.063^{*}
C3	$1.4058(4)$	$0.8173(3)$	$-0.0276(3)$	$0.0655(10)$
H3	1.4394	0.8370	-0.0919	0.079^{*}
C4	$1.3403(4)$	$0.8927(3)$	$0.0310(3)$	$0.0712(10)$
H4	1.3288	0.9651	0.0080	0.085^{*}
C5	$1.2908(4)$	$0.8638(2)$	$0.1233(3)$	$0.0624(9)$
H5	1.2448	0.9164	0.1644	0.075^{*}
C6	$1.3072(3)$	$0.7593(2)$	$0.1567(2)$	$0.0488(7)$
H6	1.2702	0.7407	0.2203	0.059^{*}
C7	$1.3934(3)$	$0.56671(19)$	$0.1365(2)$	$0.0468(7)$
H7A	1.4057	0.5658	0.2120	0.056^{*}
H7B	1.4947	0.5340	0.1134	0.056^{*}
C8	$1.0390(4)$	$0.2534(2)$	$0.1235(2)$	$0.0545(8)$

H8A	0.9597	0.2804	0.0665	0.065^{*}
H8B	0.9794	0.2499	0.1852	0.065^{*}
C9	$1.0940(4)$	$0.1444(2)$	$0.0986(2)$	$0.0708(10)$
H9A	0.9964	0.0977	0.0838	0.106^{*}
H9B	1.1665	0.1153	0.1567	0.106^{*}
H9C	1.1557	0.1477	0.0387	0.106^{*}
C10	$1.2862(4)$	$0.3105(2)$	$0.2361(2)$	$0.0547(8)$
H10A	1.3958	0.3446	0.2307	0.066^{*}
H10B	1.3047	0.2322	0.2457	0.066^{*}
C11	$1.2145(4)$	$0.3549(3)$	$0.3267(2)$	$0.0777(10)$
H11A	1.2928	0.3431	0.3880	0.117^{*}
H11B	1.1088	0.3187	0.3345	0.117^{*}
H11C	1.1948	0.4323	0.3173	0.117^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mg1	$0.0341(5)$	$0.0340(5)$	$0.0493(6)$	$0.0000(4)$	$-0.0015(4)$	$0.0023(4)$
Br1	$0.0424(2)$	$0.0587(2)$	$0.0502(2)$	$0.00999(14)$	$0.00602(14)$	$-0.00680(14)$
O1	$0.0356(11)$	$0.0375(10)$	$0.0617(12)$	$-0.0040(8)$	$-0.0073(9)$	$0.0111(9)$
C1	$0.0255(16)$	$0.0405(16)$	$0.0514(18)$	$-0.0041(12)$	$-0.0023(13)$	$-0.0063(13)$
C2	$0.0464(19)$	$0.0541(19)$	$0.056(2)$	$-0.0063(15)$	$0.0071(16)$	$-0.0068(15)$
C3	$0.059(2)$	$0.069(2)$	$0.069(2)$	$-0.0160(18)$	$0.0071(19)$	$0.0179(18)$
C4	$0.059(2)$	$0.042(2)$	$0.109(3)$	$-0.0042(17)$	$-0.005(2)$	$0.015(2)$
C5	$0.050(2)$	$0.0429(19)$	$0.093(3)$	$0.0043(16)$	$0.0063(19)$	$-0.0131(18)$
C6	$0.0376(18)$	$0.0501(18)$	$0.0593(19)$	$-0.0034(14)$	$0.0081(15)$	$-0.0048(14)$
C7	$0.0356(17)$	$0.0392(16)$	$0.064(2)$	$-0.0012(13)$	$-0.0001(14)$	$0.0002(13)$
C8	$0.0441(18)$	$0.0441(17)$	$0.074(2)$	$-0.0092(15)$	$0.0004(16)$	$0.0044(15)$
C9	$0.093(3)$	$0.0498(19)$	$0.068(2)$	$-0.0076(19)$	$0.001(2)$	$-0.0049(16)$
C10	$0.0472(19)$	$0.0471(18)$	$0.065(2)$	$0.0049(14)$	$-0.0134(17)$	$0.0164(15)$
C11	$0.087(3)$	$0.085(3)$	$0.060(2)$	$0.004(2)$	$0.002(2)$	$0.0078(19)$

Geometric parameters ($\left({ }_{A},{ }^{\circ}\right)$

$\mathrm{Mg} 1-\mathrm{O} 1$	$2.0006(18)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.373(4)$
$\mathrm{Mg} 1-\mathrm{C} 7$	$2.115(3)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9500
$\mathrm{Mg} 1-\mathrm{Br} 1^{\mathrm{i}}$	$2.5448(9)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9500
$\mathrm{Mg} 1-\mathrm{Br} 1$	$2.5659(9)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9900
$\mathrm{Mg} 1-\mathrm{Mg} 1^{\mathrm{i}}$	$3.4690(17)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	0.9900
$\mathrm{Br} 1-\mathrm{Mg} 1^{\mathrm{i}}$	$2.5448(9)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.474(4)$
$\mathrm{O} 1-\mathrm{C} 8$	$1.456(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9900
$\mathrm{O} 1-\mathrm{C} 10$	$1.458(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9900
$\mathrm{C} 1-\mathrm{C} 2$	$1.396(4)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.9800
$\mathrm{C} 1-\mathrm{C} 6$	$1.401(3)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	0.9800
$\mathrm{C} 1-\mathrm{C} 7$	$1.482(3)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	0.9800
$\mathrm{C} 2-\mathrm{C} 3$	$1.385(4)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.490(4)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9500	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	0.9900
$\mathrm{C} 3-\mathrm{C} 4$	$1.358(4)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	0.9900
$\mathrm{C} 3-\mathrm{H} 3$	0.9500	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9800
$\mathrm{C} 4-\mathrm{C} 5$	$1.371(4)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	0.9800

$\mathrm{C} 4-\mathrm{H} 4$	0.9500	C11-H11C	0.9800
$\mathrm{O} 1-\mathrm{Mg} 1-\mathrm{C} 7$	113.26 (9)	C1-C6-H6	119.0
$\mathrm{O} 1-\mathrm{Mg} 1-\mathrm{Br} 1^{\mathrm{i}}$	105.34 (6)	$\mathrm{C} 1-\mathrm{C} 7-\mathrm{Mg} 1$	110.56 (17)
$\mathrm{C} 7-\mathrm{Mg} 1-\mathrm{Br} 1^{\text {i }}$	121.26 (9)	C1-C7-H7A	109.5
$\mathrm{O} 1-\mathrm{Mg} 1-\mathrm{Br} 1$	102.71 (6)	$\mathrm{Mg} 1-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	109.5
C7-Mg1-Br1	116.84 (8)	C1-C7-H7B	109.5
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Mg} 1-\mathrm{Br} 1$	94.50 (3)	$\mathrm{Mg} 1-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	109.5
$\mathrm{O} 1-\mathrm{Mg} 1-\mathrm{Mg}^{1}{ }^{\text {i }}$	110.90 (6)	H7A-C7-H7B	108.1
$\mathrm{C} 7-\mathrm{Mg} 1-\mathrm{Mg} 1^{1}$	135.62 (8)	O1-C8-C9	112.5 (3)
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Mg} 1-\mathrm{Mg} 1^{\mathrm{i}}$	47.51 (2)	O1-C8-H8A	109.1
$\mathrm{Br} 1-\mathrm{Mg} 1-\mathrm{Mg} 1^{\mathrm{i}}$	47.00 (2)	C9-C8-H8A	109.1
$\mathrm{Mg} 1-\mathrm{Br} 1-\mathrm{Mg} 1$	85.50 (3)	$\mathrm{O} 1-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	109.1
C8-O1-C10	114.8 (2)	C9-C8-H8B	109.1
$\mathrm{C} 8-\mathrm{O} 1-\mathrm{Mg} 1$	124.43 (16)	H8A-C8-H8B	107.8
$\mathrm{C} 10-\mathrm{O} 1-\mathrm{Mg} 1$	116.89 (15)	C8-C9-H9A	109.5
C2-C1-C6	115.8 (3)	C8-C9-H9B	109.5
C2- $\mathrm{C} 1-\mathrm{C} 7$	122.7 (3)	H9A-C9-H9B	109.5
C6-C1-C7	121.5 (3)	C8-C9-H9C	109.5
C3-C2-C1	121.7 (3)	H9A-C9-H9C	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.1	H9B-C9-H9C	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.1	O1-C10-C11	112.2 (2)
C4-C3-C2	120.5 (3)	O1-C10-H10A	109.2
C4-C3-H3	119.7	C11-C10-H10A	109.2
C2-C3-H3	119.7	$\mathrm{O} 1-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	109.2
C3-C4-C5	119.6 (3)	C11-C10-H10B	109.2
C3-C4-H4	120.2	H10A-C10-H10B	107.9
C5- 4 - 44	120.2	C10-C11-H11A	109.5
C4-C5-C6	120.3 (3)	C10-C11-H11B	109.5
C4-C5-H5	119.8	H11A-C11-H11B	109.5
C6-C5-H5	119.8	C10-C11-H11C	109.5
C5-C6-C1	122.0 (3)	H11A-C11-H11C	109.5
C5-C6-H6	119.0	H11B-C11-H11C	109.5

Symmetry code: (i) $-x+2,-y+1,-z$.

